## Exercise 44

A particle moves along a straight line with equation of motion $s=f(t)$, where $s$ is measured in meters and $t$ in seconds. Find the velocity and the speed when $t=4$.

$$
f(t)=10+\frac{45}{t+1}
$$

## Solution

The velocity is the derivative of $s=f(t)$.

$$
\begin{aligned}
f^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[10+\frac{45}{(t+h)+1}\right]-\left[10+\frac{45}{t+1}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{45}{t+h+1}-\frac{45}{t+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{45(t+1)}{(t+h+1)(t+1)}-\frac{45(t+h+1)}{(t+1)(t+h+1)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{45(t+1)-45(t+h+1)}{(t+h+1)(t+1)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{45(t+1)-45(t+h+1)}{h(t+h+1)(t+1)} \\
& =\lim _{h \rightarrow 0} \frac{-45 h}{h(t+h+1)(t+1)} \\
& =\lim _{h \rightarrow 0} \frac{-45}{(t+h+1)(t+1)} \\
& =\frac{-45}{(t+1)(t+1)} \\
& =-\frac{45}{(t+1)^{2}}
\end{aligned}
$$

Therefore, the velocity when $t=4$ is

$$
f^{\prime}(4)=-\frac{45}{(4+1)^{2}}=-1.8 \frac{\mathrm{~m}}{\mathrm{~s}},
$$

and the speed when $t=4$ is

$$
\left|f^{\prime}(4)\right|=|-1.8|=1.8 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

